Myrtales
- Related Topics:
- Combretaceae
- Alzateaceae
- Penaeaceae
- Crypteroniaceae
- Lythraceae
Myrtales, the myrtle order of flowering plants, composed of 9 families, 380 genera, and about 13,000 species distributed throughout the tropics and warmer regions of the world. The majority of these species belong to just two families, Melastomataceae and Myrtaceae. Myrtales includes many trees (notably Eucalyptus), shrubs such as the classic myrtle, several food and spice genera, and many ornamental plants. Myrtales is placed in the basal Rosid group of the core eudicots in the Angiosperm Phylogeny Group IV (APG IV) botanical classification system (see angiosperm).
Family distributions and abundance
The vast majority of species in Myrtales are shrubs and trees of the tropics and subtropics. Some of the most important sources of pulp and timber in these areas, such as Eucalyptus, belong to the order. Myrtales has few representatives in temperate regions and almost none in cold zones; however, some species occur in Tasmania, and others reach the timberline in southern Australia.
Myrtaceae, with 131 genera and about 5,900 species, is particularly abundant in Australia and tropical America; some 75 genera and 1,500 species are found in Australia, and about 2,400 species occur in tropical America. Dry-fruited species predominate in Australia, whereas berry-fruited members are found in tropical America. The genera Eucalyptus and Corymbia, very much Australian specialties, contain close to 700 species and form large forests from the semiarid to the wet coastal zones and up to the tree line. Another large genus, Eugenia (including Hexaclamys), has more than 1,100 species. Myrtus grows in the warmer regions of both hemispheres, with myrtle (M. communis) being an important element in Mediterranean vegetation. The genera Heteropyxis, restricted to southeast Africa, and Psiloxylon, endemic to the Mascarene Islands in the Indian Ocean, were formerly placed in their own families.
Melastomataceae contains more than 4,960 species in 188 genera. Its members are found along the entire humid tropical belt but are most diverse in the New World, where two-thirds of the species are found. Its largest genus and one of the largest in the flowering plants in general is Miconia, with more than 1,900 species. Most members of the family are shrubs or small trees, but there are some large trees as well as herbaceous perennials and annuals (plants that complete an entire life cycle in one growing season), root climbers, and true epiphytes (nonparasitic plants that live on other plants). The former family Memecylaceae, which contained 435 species in 6 genera, is now placed within Melastomataceae.
The mostly herbaceous Onagraceae, the evening primrose family, has 656 species in 22 genera widely distributed in nature, although it is chiefly found in the temperate zones of the Americas, particularly in the western regions. The largest genus of the family, Epilobium, has approximately 165 species and is distributed in temperate zones throughout the world. Fuchsia, with mostly woody members, has 105 species and is mainly distributed throughout the region of the Andes Mountains in South America, with some species in New Zealand and southeastern Brazil. The evening primrose family also includes several marsh plants and aquatics, such as the genus Ludwigia.

Lythraceae, the loosestrife family, containing about 650 species in 31 genera of trees, small shrubs, and perennial herbs, occurs primarily in warmer regions of both the Old World and the New World and is especially diverse in South America and Africa. It now includes the former family Punicaceae, consisting of two species of pomegranate (Punica); the former family Sonneratiaceae, comprising seven or eight species of two Old World mangrove and tropical rainforest genera, Sonneratia and Duabanga; and the former family Trapaceae, with the single genus Trapa, or water chestnut, with two species of aquatic herbs found from central and southern Europe to eastern Asia and from tropical to subtropical Africa. It has become naturalized in North America and Australia. The largest genus in the family, Cuphea, has approximately 250 species in the American tropics. Purple loosestrife (Lythrum salicaria) is originally from the Old World, but its range has extended from Europe and Asia into North America and southeastern Australia.
Combretaceae, the white mangrove or Indian almond family, has about 500 species in 14 genera of mostly trees and shrubs. The family is especially important along tropical seacoasts, in African savannas, and in Asiatic monsoon forests. It comprises mangrove species of muddy shores or estuaries, such as white mangrove (Laguncularia) and eastern mangrove (Lumnitzera), as well as genera of large trees, such as Terminalia (190 species) and Combretum (255 species).
Penaeaceae, containing the former families Oliniaceae and Rhynchocalycaceae, consists of 9 genera with 29 species and is restricted to Africa. The genus Olinia, found in eastern and southern Africa and on the island of St. Helena, has 5 species. Penae and the 7 other small genera have a total of 24 species of low shrubby habit adapted to life in the dry parts of southwestern and southern Africa.
The disjunct family Vochysiaceae, with 7 genera and 220 species, is largely native to the Neotropics, though 2 genera are restricted to tropical West Africa.
Crypteroniaceae, with 3 genera and 10 species of trees, is found entirely in Southeast Asia.
Alzateaceae consists of a single genus with one or two species, particularly a scrambling shrub or treelet that occurs from Bolivia, throughout the Andes, to Costa Rica.
Characteristic morphological features
The wood of all Myrtales is characterized by the presence of phloem tissue on each side of the xylem vessels (included, intraxylary phloem), in contrast with the presence of only one phloem layer in most angiosperms. In Myrtales the pits of vessels have a sievelike appearance because of minute outgrowths from their borders, which arch over the pit cavity. Bordered pits with such processes are called vestured pits. This combination of wood anatomical characteristics is otherwise very rare in angiosperms and is used to help define the order.
An unusual feature seen in most species of Eucalyptus and some other members of Myrtaceae is the presence of lignotubers. These organs are large, woody, rounded outgrowths, up to several centimetres in diameter, surrounding the base of the young tree trunk. The lignotuber consists of a mass of vegetative buds and associated vascular tissue and contains substantial food reserves. If the top of a seedling, which has developed a lignotuber, is destroyed by fire, drought, or grazing, growth is vigorously renewed by the development of new shoots from the lignotuber. It is evident that this organ is of considerable value in an environment where fire and drought are frequent.
The root systems of mangroves that grow in tidal mudflats, such as Sonneratia (family Lythraceae) and Laguncularia (family Combretaceae), are characterized by the presence of “breathing roots” known as pneumatophores. These portions of the root grow upward until they project some centimetres above the low-tide level. They have small openings called lenticels in their bark so that air can reach the rest of the plant’s root system. Another feature of most mangroves is aerial prop roots, which form a tangled jungle, even after the main roots and stem bases of the trees have decayed.
In the Onagraceae family, a similar adaptation to an oxygen-deficient environment is seen in Ludwigia, a genus of plants found in wet areas. When plants grow in water, air spaces develop in the tissues of the roots and submerged stems, and in L. repens special spongy-tissued respiratory roots grow to the surface of the water. Under ordinary dry-land conditions, however, the same plants do not exhibit these features. Loose internal cell tissue that contains air spaces also occurs in the submerged portions of the stems and roots of marsh-inhabiting species of the family Melastomataceae.
Most members of the order bear opposite, simple, and entire leaves, but there is considerable variation in leaf arrangement between families and within species or even individuals. For example, within a single genus, Quisqualis (family Combretaceae), alternate leaves are borne on the stem, and opposite leaves are borne on the flowering shoots. In Eucalyptus, young branches have opposite leaves, whereas the leaf arrangement on older branches is alternate.
Whorled leaves occur in a few genera, and quite often the leaves are disjunct-opposite, or “scattered,” as in many species in Myrtaceae, Onagraceae, and Combretaceae and some in Lythraceae. In most of the families in the order, stipules are diminutive, only rarely reaching a length of more than a few millimetres; they are absent in Combretaceae, Onagraceae, and Melastomataceae. The upper leaves of Trapa and some Ludwigia species have inflated petioles that act as a float, while the submerged leaves are finely divided and resemble roots. In most Melastomataceae and in some Myrtaceae, there are several main secondary veins that branch out from the base of the blade and many tertiary veins that run in a transverse pattern across the leaf blade. This venation pattern gives the leaves of nearly all members of Melastomataceae a highly characteristic appearance. Leaves of Myrtaceae species are further characterized by large scattered oil-containing cells that are visible as translucent spots when the leaves are held up to the light.
The inflorescences found in Myrtales are extremely variable, but the panicle seems especially frequent. In some members of Myrtaceae and Melastomataceae, flowers and fruits are borne directly on the old wood of the trunk; this is known as a cauliflory. The flowers of most species of Myrtales are bisexual (i.e., they have both male and female parts in the same flower), but those of some species of Myrtales, such as Eucalyptus calophylla, Pimenta dioica, some Sonneratia species, and a very few members of Melastomataceae and Crypteroniaceae, have flowers of only one sex; structures of the opposite sex, though originally present, fail to mature in these cases.
In Myrtales the floral tube, known as the hypanthium, surrounds the ovary either tightly or loosely or is fused to the ovary walls for varying lengths. The rim of the hypanthium bears calyx lobes (free sepals), petals, and either one or two whorls of stamens or numerous stamens. Flowers in which the flower parts appear to arise at the top of the ovary rather than at its base (epigynous) are considered the most advanced, and perigyny (the flower parts appear to arise at the same level as the ovary) is undoubtedly the ancestral condition in Myrtales. The flowers commonly contain four or five parts (four- or five-merous) and very often have two whorls of stamens or stamens grouped in fascicles (bundles). The calyx lobes are sometimes shed as a cap when the flower blooms; the cap may be woody (Eucalyptus) or herbaceous (several genera of Melastomataceae). Flowers of Vochysiaceae are most unusual in the order, with fertile stamen number reduced to one in some species.
Myrtales pollen is usually in the two-celled state when mature and liberated from the anthers; i.e., it consists of a large vegetative or pollen tube cell and a smaller generative cell. Only in Combretaceae do some species have three-celled pollen grains (with the generative cell having divided to form the two sperm cells). Members of Onagraceae are very distinct in the order in their pollen characteristics. In most flowering plants, the four haploid cells resulting from the nuclear reduction divisions (meiosis) in the anthers, and from which the pollen grains (the male gametophytes) develop, remain joined together for only a very brief period before separating as four individual pollen grains. In Onagraceae, however, they often form tetrads (groups of four joined at their corners), and, in most members of the family, the pollen is furthermore connected by viscid threads that stick to a visiting insect; thus, hundreds of pollen grains are drawn out of the anther at the same time.
Following fertilization, nuclear endosperm, a tissue with nutritive function for the developing embryo, is formed in the embryo sac. This tissue is depleted during seed development, and the mature seeds are generally without any or with a very thin layer of endosperm. In the water chestnut, however, endosperm formation hardly takes place. Instead, the embryo sac becomes prolonged and invades the surrounding tissues, from which the embryo is then supplied with nutrients. Although normally the embryo in Myrtales species has two cotyledons and stores fatty oils and aleurone, the water chestnut has only a single rudimentary cotyledon, and the embryo stores starch. Starchy embryos also occur in some Myrtaceae species.
In Eucalyptus, only relatively few of the ovules present in each ovary develop into seeds; the majority are sterile. The sterile ovules, called ovulodes, remain small and form chaff. The amount of mature seed to chaff by weight is often as little as 5 percent. Polyembryony, the presence of several embryos in each seed, on the other hand, occurs in several families of the order and is very common in myrtle and the genus Eugenia (including the Brazilian and Surinam cherries). In E. paniculata, up to 21 embryos have been found in a seed, and it is unusual for there to be only one.
Vivipary, a feature of mangroves such as Sonneratia and Laguncularia, is seed germination inside the fruit while it is still retained on the tree; following the growth of the seed leaves, the root end of the embryo elongates and passes through the opening in the seed (micropyle) and then through the ovary wall. It may grow a considerable length before the seedling drops into the mud, where it establishes itself at once.